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Abstract. The storage capacity of a Q-state Hopfield nehvork is determined via finite- 
size scaling for parallel dynamics and Q 4 8. The results are in g w d  ageement with 
lheoretical predictions by Rieger. The basins of attraction and other associative memoly 
properties are discussed for Q = 4, 6. A self-controlling Q-state model with improved 
basins of attraction is proposed. 

1. Introduction 

Recently binary Hopfield networks [l] have been generalized to models where the 
neuron behaviour is more diversified [2-71. One side of this development draws 
us closer to biology where neurons possess a richer stucture than the formal binary 
neurons of Hopfield. On the other side the associative memory properties of more 
evolved models are important and should be investigated for possible applications. 
Especially, grey-level neurons could in principle be an interesting representation for 
the distributed processing of grey-tone data [ 4 4 ] .  

In this paper we show that for applications, grey-level neurons do not seem 
to be appropriate, because of the low storage capacity and slow dynamics of the 
network. Nevertheless they possess some interesting features. Our results are in 
good agreement with theoretical results by Rieger [41, Kohring [SI, and Mertens er al 
[6] who claim that the storage capacity CY< - 1/Q2,  where Q is the number of grey 
levels. 

In section 2 we will define the &-state Hopfield model. In section 3 the hasins of 
attraction are investigated and the scaling results for the storage capacity are given 
in section 4. In section 5 we define a self-controlling Q-state model with better 
associative properties than the one defined in section 2. The basins of attraction are 
investigated in section 6 and some conclusions are given in section 7. 

2. The Q-state Hopfield model 

An interesting generalized type of associative memory is the Q-state Hopfield model. 
While binary-niurons can take only values si E {*1), a Q-state neuron Si can take 
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values in the discrete set A4 = {cl,. . . , uQ} E Z. These values ui are selected 
equidistantly and symmetrically around 0, e.g. for Q = 4 the states are chosen to be 
{-3, -1 ,1 ,3} .  The expectation value of the mean pattern-vector length is then given 
by 

for uniformly distributed patterns E’ ( i  = 1,. . . , N and f i  = 1,. . . , p ) .  These 
patterns chosen from M are stored by a normalized Hehbian learning rule 

as attractors of the network dynamics. A parallel deterministic updating 

is used where the local field h, is given by 
S,(t + A t )  = d y n  (?h , j t ) )  (2) 

N 
h ; ( t )  = J i j S j ( t )  (3) 

j # i  

and the generalized step function dyn with steepness parameter y = 1 is defined as 

if z E [ U ( U ~ ) . O ( U ~ ) ]  

d y n ( z ) =  {: : (q E A t )  (4) 

uQ if ‘ 6 [ u ( u Q ) > o ( u Q ) ]  

The lower and upper bound .(Ui) (respectively o(ui)) of the interval have to be 
chosen carefully in order to map hi correctly onto ui. From a signal-to-noise analysis 
we can see that 

lfll < f l d u )  - 4a) l  (5 )  
should hold for the modulus of the noise term IRI in order to stabilize a given 
pattern F correctly, if the respective U is taken to be in the middle of the interval 
io(.) - u(u)l (e.g. for Q = 4, u3 = 1, o ( u 3 )  = 2, u(u3)  = 0). We will see that 
(5) can be violated depending on the initial state So. From theoretical results [4-61 
we also know that a, - 1/Q2, so it is clear that large network sizes have to be used 
during the simulations. Both facts make our investigations very time consuming. 

So the calculation of the local field was implemented as 

for efficiency reasons since N >> p .  In order to speed up the algorithm only the set 
of changing neurons I was taken into account: 

N 

( € “ , S ( t ) )  = C C S , ( t ) =  ( € ~ , S ( t - l ) ) + ~ ~ ~ ( S ~ ( t ) - S ~ ( t - l ) )  (7) 
,=1 % € I  

where I = {i I S , ( t )  # St(t- l)]. Note that for binary neurons (7) can be calculated 
using bit operations while for &-state neurons this is no longer possible. This fact 
yields a rather slow performance. 
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3. Basins of attraction 

It is not clear a priori which order parameter should he chosen to measure the extent 
to which we have retrieved a certain pattern. At present nothing is known about the 
geometry of the basins of attraction. They could be spherical or polyeders, so we 
define a number of order parameters, each of which could measure a different aspect 
of the attractor geometry. One can take the cosine between the normalized vectors 
<U and S 

where IlAll = ,,/m and we define mp = 0 for S = 0. Equivalently one can 
use an error rate 

or the Tanimoto measure [SI. which is a compromise between (8) and (9). 

The Tanimoto measure was originally used to measure the similarity between two 
sets A and B .  It is defined as the ratio between the cardinalities of the intersection 
card(A n E )  and the union card( A U B )  of the sets A and B. For real vectors 
card( A n B )  is replaced by the scalar product ( , ) and card(AUB) by the difference 
"I U1c. JUUL U, LUG LLL""Ull dlLU U,G ?,Cdldl yLuuuLr. "llC WUIU arau Llllllh ", ULllCl "LUC, 

parameters as 
,,F+L,."..... , .C+L^ ...,,A..,: ""A +L^ -^" ,--....- -I __..I n-" "....,A ..:^I_ ^C^.L^_ ?.-A"- 

In the following we will use the cosine as a common measure for the initial 
state mo. It is demonstrated in figures 1 and 2 that the order parameters (8)- 
(10) show comparable behaviour regarding the basins of attraction, i.e. regarding the 
measuring of the type of retrieved state in the associative memory. 

For Q = 4,6  and N = 1024, 1536, 2048 we average over 512 initial states 
at different memory loadings a. Clearly a breakdown of all target-state similarity 
measures can be seen at the interval borders where (5) is violated. The diagrams are 
meant to show a qualitative behaviour of the model. 

For figure 1(a) we see a breakdown in the cosine measure (8) for n z O  = i. which 
can be explained by signal-to-noise analysis. For Q = 4 the ui are defined as above, 
and at the interval border 2 (between uq = 3 and u3 = 1). choosing ?no = $ and 
ti = 3, it is only the sign of the noise term R that decides whether the local field 
hi tends towards 3 or 1. So the dip seen in the curves is an artefact caused by 
the special form of the dyn  function. If the dyn function is modified, e.g. the ui 
are not chosen equidistantly any more, or the steepness parameter y is altered, then 
the characteristic m0 also changes. The dip at ?no = $ is increased in depth with 
growing a. 
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Figure 1. Cosine measure (m,) for ( 0 )  Q = 4 and N = 1024, 1536, 2048, where 
a = 0.0156 (0.008) for the lower (upper) curve and for ( b )  Q = 6 and N = 2048, 
where a = 0.008 (0.004) for the lower (upper) curve. 

We see that the upper curve in figure l(a) with a = 0.008 is rather sharp, the 
plateau at (m,) - 0.89 corresponds to a state where all {*3} are mapped onto 
{rtl}. Therefore we expect (m,) to be (m,) - 2/& - 0.89. For this state (Mf)  
is expected to be 0.5, since 50% of the values in both vectors coincide. The error 
rate is (err,) - 0.13. The lower curve is drawn for a = 0.015 which is closer to the 
critical a, - 0.018. 

For higher Q values we find a higher number of dips. In figure l(b) we see 
Q = 6 with a = 0.004 (upper curve) and a = 0.008 (lower curve) both of which 
are below a, - 0.0083. The system size for the simulation is N = 2048. We find 
the following mixture states: the states with (m,) = 0.88 arise because nodes which 
should be in the {i5} or {f3} state actually take a {fl} state if the initial overlap 
mo is in the interval [0.1, 0.351. In this configuration the other measures take the 
values ( M , )  - 0.3 and (errf) - 0.16. 
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Figure 2. Mean final-state characteristics of the Q-state network dynamia (2) as a 
function of initial overlap " ( 0 )  = m o  for Q = 4 and N = 1024,1536, 2048. where 
oi = 0.0156 (0.008) for the lower (upper) C U N ~  is measured (a )  by the error rate (emf) 
and (6) by the Tanimoto m e a w e  (Mf). 

For an initial state nao E [0.45, 0.61, we see from the Tanimoto measure that of 
the states stay unchanged. A superposition of the transitions [ + ( 5  - 3) + i(5 - l ) ]  
or [ + ( 5  - 3) + f ( 3  - l)] would keep $ of the states unchanged. Both transitions 
would yield the correct error rate of (err , )  - 0.075, but the value (m,) - 0.95 holds 
only for the transition [ + ( 5  - 3) + f ( 3  + l)]. 

We see that the three measures all provide a good way to describe the multitude 
of spurious states in figures 1 and 2, i.e. the structure of the basins of attraction. 

It is also clear that a &-state network has a rather small robustness against 
distortion, dependent on the special form of the d y n  function. The transition from 
correct recognition to non-recognition proceeds in several steps, in the sense that 
the system undergoes a number of transitions through various phases, where we get 
spurious states with correct signs hut wrong vector length (cf figures 1 and 2), e.g. 
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for Q = 4 a state (f = -3 is mapped onto Si = -1. The phase borders depend on 
the number of &-states, the steepness parameter y of the dyn function and a as we 
have seen in the figures. In the following we will use the cosine m u ,  to study more 
of the model’s interesting features. 

T Sriefvarer and K-R Muller 

4. Critical storage capacity 

In order to calculate the critical storage capacity a, we use a finite-size scaling ansatz 
for the weight of the retrieval peak f .  Therefore 2000-3000 pure patterns (; (from 
different random pattern sets) are used as intitial states and the final overlaps n ~ ,  
are determined. We m u m e  that f. the weight of the retrieval peak (cf figure 4) 
or the percentage of final overlaps with m, > 0.9 exhibits the following form for 
a, - a, and large N :  

which is expected for a first-order phase transition at a,. an = p / N  and A, E are 
constants. For fixed Q and U, the values l n ( f ( a o , N ) / l  - f ( a o , N ) )  should be 
straight lines intersecting for different values of N (figure 5(a)): 

gN(a,) = I n  ( A )  + B N ( a ,  - aoj . (12) 
For two appropriately chosen fixed values of a,, g( a,) from (12) is plotted as a 

function f( l /N)  for different values of N (figure 5(b)): 

0, can then be taken from the intersection of both curves. In table 1 a summary 
for different values of Q is given and the corresponding values of a, are shown. In 
figure 3 we compare the data of our simulation to results of an analytic calculation 
of Rieger 141. Both results are in good agreement. The prediction by Rieger for high 
values of Q 

0.3 
ac - - 

Q 2  

is given in figure 3 together with our estimates of a,. In the large-& regime (Q 2 6) 
the agreement is very good, while for low values of Q we find the same kind of 
deviation as Rieger did in his analytic study. Figure 4 shows the weights of the 
retrieval peak below and above ac. In figure 5 we show the results of interpolation 
(13) for Q = 4 and different values of N .  

Table 1. Critical storage capacities a, for different values of Q. 
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Figure 3. Comparison of the critical storage capacities olC for different  value^ of Q with 
the theoretical result [4]. 

0 0.2 0.L 0 6  0.8 1.0 

l o )  

0 84 N ~ 7 6 8  

5 0 . 6  
4 

0 0 2  O L  0 6  0 8  1C 
m I b l  

0.84 N =3072 

0 . 6  J 

N = 3 0 7 2  

m 

Figure 4. Weight of the retIieval peak below and above a, = 0.018 for (n) a = 0.016 
and ( b )  a = 0.039 fur Q = 4 and different nerwork sizes N .  

5. A self-controlling model 

We now propose a network or rather a dynamical system, which suppresses the 
spurious states encountered in section 3 by self-adjusting y in the d y n  function, 
thereby increasing the basin sue drastically. In the following we study the dynamics 
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Figure 5. Finite-size scaling interpolation for Q = 4 

of this model, 

The key idea is that the state vector is normalized, i.e. y = p/lISll. Of course 
a normalization as in (15) is a non-local process so we actually leave the field of 
biologically plausible neural networks. 

We see that, although the same dips as in figure l(a) occur in figure 6 ,  a normal- 
ized dynamics as in (15) is more robust against distortion, because the spurious states 
are destabilized by the self-adjusting y. For example if the sign of the pattern state is 
correct but its length is incorrect, e.g. ISi( < ICpI, then this state is not stable since 
p /  llSll is increased above 1. Therefore in the next step of (U) the network will be 
able to reach a higher value of ISi( and step by step the original pattern length is 
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reconstructed adaptively. A corresponding correction mechanism holds also for the 
other direction, where IS;I > I(rI. At the fixed point we find /3 - ljSll and y - 1 as 
in section 2. 

COIIel. 
in percent 

10 

0 “ m  I 

0 10 20 30 40 50 60 70 80 90 100 
mo * 100 

Figure 6. &umparison beiween ihe diikreni measures ior the seii-urniruiiing mudei, 
where a = 0.008, N = 1024, Q = 4. 

So the normalization does not affect the storage capacity, since the fixed points 
of the mean-field equations of (15) are not changed by renormalization, but (15) is 
crucial for an improvement of the fault-tolerance, respectively the basin sue of the 
model. 

In principle one could also define a neural network using in (6) M” (respectively 
M,”) instead of mW. This increases the storage capacity and the basin size, because 
the noise term is reduced nonlinearly since M @  < m@. The respective synaptic 
couplings then have to be changed from (1) to either non-local or higher-order 
weights. 

6. Basins of attraction for the self-controlling model 

In order to calculate the critical overlap mC for the self-controlling model again 
we use a finite-size scaling ansatz. For this a set of 500 distorted initial states (from 
different random pattern sets) with overlap m, is chosen and the average final overlap 
m, is determined. The distorted states are chosen equally distributed over M .  

I ne steep decrease of ihe weight of the reirievai peak j &se io m, is inierpoiated 
for different network sizes N .  f is assumed to show the following form for nao - ni,: 

-. 

similar to the finite-size scaling ansatz for the critical storage capacity in section 4. A 

figure 7 and a summaly for Q = 4 can be determined from table 2. 

self-controling model. 

and E are a?!!!!2!!!S. -Lc ca!! !he!! be :.ken from the in!ersec!io!! of both cllrves ia 

For the dynamics (2) we obtain niC 2 3 showing less fault tolerance than the 
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Figure 7. Scaling rewlts for the critical overlap m, for Q = 4, different N and a 

Table 2. Critical values m, for Q = 4 and different stwage capacities a for the 
self-controlling model. 

a m, in % ( Q  = 4) 

0.0039 7.053801 (f0.285765) 
0.0049 15.43490 (f0.392263) 
0.0097 23.19953 (f0.317813) 

7. Conclusions 

We have shown in a number of very time-consuming simulations how the important 
parameters of the associative memory a,, m, scale with system size. The results are 
in good agreement with theoretical predictions. 

Concerning robustness of the associative memory, we could see that the Q-state 
model undergoes several transitions from correct recognition to spin-glass phase 
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(cf [9]). The phase borders depend on Q, y and a. The type of spurious state 
can be explained in term of different measures, each covering its own aspect of the 
basin shape. In order to get a network with high robustness being able to reconstruct 
all grey tones correctly below m, we propose a self-controlling network model. This 
model improves the retrieval qualities of the Q-state Hopfield network drastically. 

From our investigations we conclude that a grey-tone network defined as above 
cannot be used for real practical purposes, because of its low storage capacity and 
its slow performance. In pattern recognition, it seem to he unreasonable to use a 
Q-state Hopfield network as proposed in [4-61. One should rather spend more time 
for the preprocessing of the images, and then employ a more efficient model, possibly 
involving sparse coding [lo] or a grey-level perceptron [Ill. 
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